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Abstract
Complex control systems for autonomous

vehicles require integrating new control algorithms
with a variety of different component technologies
and resources.  These components are often
supported on different types of hardware platforms
and operating systems and often must interact in a
distributed environment (e.g., in communication
with a groundstation, mothership, or other UAVs in
a swarm).  At the same time, the configuration and
integration of components must be flexible enough
to allow rapid online reconfiguration and adaptation
to react to environmental changes and respond to
unpredictable events during flight, such as avoiding
a moving obstacle or recovering from vehicle
equipment failures. This paper describes an open
software architecture, called the Open Control
Platform (OCP), for integrating control
technologies and resources.  The specific driving
application is supporting autonomous control of
vertical take-off and landing (VTOL) uninhabited
autonomous vehicles (UAVs).

Introduction
Achieving autonomous flight for high agility,

extreme performance aerial vehicles poses
significant challenges to current control systems
engineering.  It requires integrating innovative
control algorithms with a variety of component
technologies and resources, including advanced
perception and sensor processing, simulation and
visualization, geographic information systems, and
global coordination resources.   The challenge is to
deal with the complexity of integrating these
components in a distributed environment, while still
providing the flexibility to reconfigure them
dynamically.  This paper describes an open

software architecture, called the Open Control
Platform (OCP), for integrating control
technologies and resources, which is being
developed as part of the DARPA Software Enabled
Control Program.  The specific driving application
is supporting autonomous control of vertical take-
off and landing (VTOL) uninhabited autonomous
vehicles (UAVs) [1]. The OCP extends current real-
time distributed object computing technology to
coordinate distributed interaction among
hierarchically organized components and to support
dynamic reconfiguration of the components.  The
OCP allows systems of components with
standardized interfaces to be connected while
abstracting away implementation details of lower
level components. This enables components to be
easily switched, rewired, and adapted at run-time to
support dynamic reconfiguration.

This paper first gives background on the UAV
application context and typical control system
architectures that need to be supported.  It then
describes the control-specific application program-
mer interface (Controls API) to the OCP and the
process of using the OCP.  Working examples from
the VTOL UAV application are highlighted. These
include results of a telemetry flight test in which the
OCP was used to perform a smooth online switch
between two sensors providing telemetry data at
different rates.  Finally, open research issues and
future directions are described.

Challenges of Integrating Diverse,
Distributed Control Components

The OCP is being developed to support the
integration and rapid run-time reconfiguration of
complex control systems.  The particular
application chosen to drive OCP development is
autonomous control systems for extreme-
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performance UAVs, such as the Yamaha R-50/R-
max helicopter and the X-cell VTOL UAV.
Autonomous flight requires dealing with
unexpected external threats, such as moving
obstacles, and unpredictable internal failures, such
as a tail rotor failure, that can disrupt a mission.
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Figure 1. Control Hierarchy
A typical way of structuring the UAV control
system is shown in
Figure 1.  It uses a hierarchy of control algorithms
[2]:

• Low-level control algorithms in the flight
control system perform stability and control
augmentation [3,4,5,6,7]

• Mid-level control components respond to
discrete events, such as a mode change or
the occurrence of a vehicle failure.  Mode
transitioning manages the graceful transition
form one operational mode (such as hover)
to another (e.g., fly forward) [8].  Other mid-
level control components perform fault
detection, identification, and fault-tolerant
control reconfiguration to recover from
vehicle failures.

• High-level control components perform
mission planning and replanning and choose
a sequence of operational modes to execute
the mission plan [9].  It does this based on
an assessment of progress toward the
mission goals and awareness of external
obstacles and the location of the target.

The hierarchy of control system layers helps
control the complexity of differing time scales
among components and the interaction between
components with continuous dynamics at the lowest
level and discrete-event components at the highest
level.  Mid-level components provide a bridge
between the two, for example, by managing a
continuous, smooth transition from one discrete
mode to another.

Developing hierarchical control systems like
these involves integrating many different types of
components, including software algorithms, device
drivers for hardware components, sensor data
processing code, and mathematical flight dynamics
models written in more than one programming
language.  The components may also originate from
a variety of sources: newly developed using
Matlab/Simulink, off the shelf commercial
products, or legacy components.  These systems are
further complicated in that the components are
often distributed across different hardware
platforms and types of networks.  In the UAV
application, components running on the on-board
computer may communicate with monitoring
components on groundstation computers.  They
may share navigational or proximity data with other
UAVS in a swarm and they may receive mission
planning information from the swarm’s
coordinating mothership.

Integrating these diverse components so that
they seamlessly communicate with one another both
locally and remotely is challenging. Building these
systems requires detailed, tedious activities:
complex timing relationships have to be worked
out, data interchange protocols have to be created
and maintained, detailed network programming
(e.g., using sockets and remote procedure calls) has
to be performed, and careful prioritization and
scheduling of tasks has to be accomplished.

Even more challenging is trying to change
these systems – either offline (e.g., to incorporate
new types of sensor technology) or at runtime (e.g.,
to switch to a new control algorithm in response to
a vehicle failure).  Yet, the ability to flexibly and
easily adapt the system architecture is critical to the
ability to reuse and to the “plug-and-play”
extensibility of complex control systems.
Furthermore, rapid adaptation is critical to enabling
innovative online customizable controls technology
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for extreme-performance applications, such as
aerial robotics.

Role of the OCP
The primary motivation for developing the

Open Control Platform is to raise the conceptual
level at which the controls engineer integrates
components of complex, distributed, and
reconfigurable control systems.  Rather than
programming at the level of network protocols,
sockets, memory byte orderings, and remote
procedure calls, the OCP supports flexible
component integration, providing an abstract
interface based on familiar controls engineering
concepts, such as block diagram components, input
and output ports, and signals (e.g., measurement or
command signals).  As shown in Figure 2, the OCP
consists of a core real-time distributed computing
substrate, wrapped with a Controls API layer that
provides abstractions that bridge the gap between
the controls domain and the core distribution
substrate.  Our research focuses on development of
the Controls API layer.  For the core OCP, we
experimented with two different distributed
communication substrates.  We designed the
Controls API to allow different cores to be plugged
in as new distribution substrates become available
or improvements are made to the existing
technology in the future.
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Figure 2. OCP Integrates Distributed
Components  Using Controls Domain

Abstractions

Core OCP
Recent advances in distributed object

computing have provided middleware technology to
allow distributed, heterogeneous components to
interoperate across diverse platforms and network
protocols in real-time.  Specifically, we have
successfully leveraged from two different
distribution substrates.  One is being developed by
Boeing Phantom Works and Washington University
and is based on Real-Time CORBA [10].  CORBA,
which stands for Common Object Request Broker
Architecture, is a standard set by the Object
Management Group (OMG) [11] to achieve
seamless distributed communication between
objects running on different computers and across
multiple network protocols. Real-time CORBA
extends CORBA technology to allow distributed
communication to occur in real-time [12,13].  The
other distribution substrate we experimented with as
the core OCP is Real-Time Innovations’ Network
Data Delivery Service (NDDS) [14].  This section
describes the particular mechanisms that these
substrates provide which are critical to supporting
reconfigurable, distributed control applications.

Our UAV control application imposed three
key requirements on the distributed communication
substrate formed by the core OCP:

• Plug-and-play extensibility and evolution
calls for decoupled, mediated
communication between components.
While tightly coupled components can make
the system faster, it makes changes to the
system extremely difficult to achieve,
particularly online. It severely reduces the
ability to interchange components on the fly.

• High-performance distributed communica-
tion is needed to ensure that time, memory,
and bandwidth resources are conserved,
particularly in this application where
onboard computational resources are limited
and remote communication may occur over
wireless links.

• Online adaptibility of the control application
requires that the distribution mechanism can
be dynamically customized and reconfigured
at runtime.  This requires dynamic
scheduling and dynamic resource
management.
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Decoupled, Mediated Communication
To satisfy the requirement of decoupled,

mediated communication, both core OCP
distribution substrates support a “publish-subscribe”
model of communication.  In Real-Time CORBA,
this is provided by the real-time event service [12]
and NDDS supports what they call RTPS, or the
“Real-Time Publish-Subscribe” model [14]. In the
publish-subscribe model, a bus-like communication
abstraction is used, often called an event channel.
Components that generate data ("suppliers") or use
data ("consumers") connect to the event channel
and the suppliers "publish" certain data event types
while the consumers "subscribe" to certain event
types. Quality of service (QoS) properties can be
associated with subscriptions to specify the real-
time prioritization and timing requirements of the
events.

The event channel acts as a Mediator [15]
between components so that their interconnections
are flexible. When a component subscribes to some
type of event, (e.g., navigational state information)
it does not necessarily care where that information
is coming from. It would like to receive that
information from whatever sensors or sensor
processing modules are active. The software should
not make rigid commitments to which components
are providing this information by hardcoding a call
to a specific source of data.  The event channel
provides the level of abstraction needed by
mediating information flow between suppliers and
consumers. For example, when a new type of sensor
is added to the system or replaces another type of
sensor, it can be connected to the event channel to
publish its type of data and all consumers
subscribed to that type will receive it.

 The system architecture is reconfigured by a
relatively local change in connections to the event
channel, rather than by more pervasive changes
between the suppliers involved and all possible
consumers. Thus, the event channel helps to
minimize the architectural impact of switching
components by localizing the changes needed so
that they can be made quickly and with high
reliability.

High-Performance Distribution
The primary mechanism used in the core OCP

to satisfy the need for high-performance distributed
communication is replication.  This is a common

technique in distributed computing which caches
local copies of remote data objects so that they can
be efficiently accessed frequently by several local
consumers.

Online Adaptibility and Reconfiguration
The third requirement of supporting online

adaptation of the system means that the
mechanisms used to support the other two
requirements themselves be customizable at
runtime.  For example, runtime changes to quality
of service parameters and event subscriptions must
be supported.  Similarly, replication update
strategies must be customizable.  For example,
replicated information being received on the ground
may need to be updated more often when a critical
mission replanning task is being performed to avoid
a threat.

NDDS and Real-Time CORBA differ in their
ability to support this dynamic aspect. Briefly, RT
CORBA provides more generality and flexibility
and more powerful event processing abstractions,
such as event correlation and pluggable scheduling
strategies.  NDDS, on the other hand, provides
higher performance and online-customizable
replication mechanisms.  Boeing is  currently
developing a Core OCP that uses RT CORBA and
incorporates recent advances in dynamic scheduling
from Washington University [16] and dynamic
resource management from Honeywell
Technologies [17, 18].

An important feature of the Controls API we
are generating at Georgia Tech is that it makes the
underlying distribution mechanisms used by the
Core OCP transparent to the controls system
developer. This will enable a system designer to
easily incorporate improvements to real-time
communication technologies as they become
available in the future.

Controls API
The Core OCP abstracts away details of

dealing with remote objects, network protocols,
etc., but it still requires extensive computer science
background (e.g., details about event channels,
scheduling, and replication) to use it effectively.
The  Controls API raises the level of abstraction
higher to provide a convenient interface familiar to
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controls engineers, bridging the gap between the
controls domain and the core OCP.

A control system is conceptually made up of
components, which communicate via signals (see
Figure 3).  The Controls API provides a component
interface for sending and receiving data (e.g.,
measurement signals and command signals),
sending and receiving notifications, and performing
system reconfiguration.  Notifications include
timeout events, signal update events, and
correlation events (which are user-specified unions
of events).
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Figure 3. An Example OCP Component
Configuration with Ports and Signals

Components (the grey boxes in Figure 3) are
collections of subcomponents, each of which
consists of user-defined application code. Each
subcomponent consumes zero or more input signals
and generates zero or more output signals.  For
example, in Figure 3, the PID Controller receives an
attitude measurement signal and it generates a
command signal.  Components provide a static
interface through input and output ports which
connect to particular signals of subcomponents – in
essence making certain signals visible to other
components.  The static port interface provides a
contract stating which data signals the component
consumes or generates, while hiding details about
which subcomponent(s) within the component
actually use or produce those signals.  This
facilitates dynamic reconfiguration by allowing
subcomponents to be easily replaced by others

within a component via a local rewiring of signals
to component input and output ports.

Ports represent mediated connection points
which contain quality of service information.  They
can be viewed as the “hinge points” at which
reconfiguration can take place by rewiring the
signals that are connected to them.  They allow
subcomponents to communicate input and output
signals to one another anonymously .  The individual
subcomponents do not connect directly to one
another, but instead they are decoupled.  Their
communication is mediated through ports and
signals, which is maintained via a signal manager.
The signal manager hides details concerning the
event service and data replication.

Ports and signals are used to transfer data
between user-defined components.  The data
transferred may be aggregate in that it may contain
multiple elements (e.g., a measurement signal may
be a vehicle state vector).

At runtime, the connections from ports to
signals and vice versa can be created, disconnected
and reconnected.  Ports and signals allow both the
application code and the underlying
communications mechanisms to have fixed
endpoints, while providing for runtime
reconfiguration.  Ports are the static entity for the
infrastructure; while signals are the static entity for
application code.  The following constraints govern
the use of ports and signals in component
integration:

• At startup, all ports and port-to-port
connections must be setup, and they cannot
be changed once they are declared.

• Signals can be declared and connected to
existing ports at any time during execution.
A signal may also be disconnected from a
port at any time.

• Ports may fanout, but not fanin.  That is, an
output port can connect to any number of
input ports, but an input port can be
connected to at most one output port.

• Signals may fanout, but not fanin.  That is,
an output signal may connect to multiple
output ports, but each output port can
connect to at most one output signal.
Similarly, an input port can connect to any
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number of input signals, but each input
signal can connect to at most one input port.

Application Examples and Results
Flight trials of the OCP were conducted at

Georgia Tech using an X-cell helicopter testbed,
shown in Figure 4.  The goal of the flight trials was
to test the dynamic reconfiguration and distributed
communication features of the OCP. The basic
mission of the X-cell was to obtain telemetry data
and communicated it to the ground computer in real
time, at rates that could be varied by the user on the
ground.

Figure 4. Flight Test Aircraft
The avionics system used in the flight trial

consists of mostly off-the-shelf hardware and
software components.  It uses a 486 flight control
computer, running the Linux operating system.  The
sensor suite consists of an attitude and heading
reference system, a sonar altitude sensor, and a
Novatel differential GPS.  The avionics box is made
to be highly modular so it can be ported to other
helicopter testbeds.  The integration of the hardware
and software components for the flight test was
performed in a few weeks using the OCP – a
significant improvement over previous systems
integration efforts which took several months
without the aid of the OCP.
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Figure 5. Telemetry Flight Test Data Flow
The block diagram shown in Figure 5

illustrates the communication paths between the
primary components.  Existing sensor drivers were
used to read the sensor data and the data was made
available to the OCP application running on board
the helicopter.  This data was sampled at different
rates to represent the realistic situation in which
data may be required at different sampling rates by
different components.  The roll rate sensor data was
selected for this application.  The sensor output was
received on the ground at user-specified rates.  The
software configuration for the sampling rate was
controlled from the ground.  That is, commands to
switch to a different rate were given from the
ground, which caused an online reconfiguration of
the software running onboard the vehicle. A video
of this flight test can be viewed at
www.uav.ae.gatech.edu/sec/.

We have also employed the OCP’s integration
and dynamic reconfiguration capabilities in the
support of innovative mid-level control algorithms
for mode transitioning and for fault detection and
identification [19, 20].  We have successfully tested
these in simulation (see www.uav.ae.gatech.edu/sec
for video clips of these tests).  We plan to perform
hardware-in-the-loop simulation tests, followed by
actual flight tests of these mid-level control
algorithms on a helicopter testbed in the near future.
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Future Directions
The OCP simplifies the integration of

complex, distributed control systems while
providing the flexibility for rapid online adaptation
and reconfiguration.  There are a number of areas of
ongoing work, including the following.

Allowing runtime changes to quality of service
properties of signals is a challenging open issue
which will benefit from new dynamic scheduling
algorithms [16] and dynamic resource management
[17, 18] capabilities which Boeing is incorporating
into the core OCP.

A generic interface to mid-level control
components is being developed, which will provide
support for hybrid control systems.  This will
provide common reconfiguration primitives used in
fault tolerant control reconfiguration, including
support for making gradual transitions from one
component to another, based on user-defined
transition functions.  This is particularly useful in
hybrid control applications where a discrete switch
from one signal to another or a discrete replacement
of one component with another is not desirable.

Mechanisms for configuration and
reconfiguration validation are also being developed.
In addition, tool integration of the OCP with
common tools used by controls engineers, such as
Matlab/Simulink and RTI’s ControlShell, is
planned.

As controls applications become more
complex and more distributed, new ways of
developing and integrating control algorithms are
needed.   The OCP leverages from recent advances
in software technology to enable rapid
development, evolution, and online adaptation of
these systems.
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